Review on Monitoring of surface roughness in CNC end milling

Tejas Ghinmine Mechanical engineering Saraswati College of Engineering, Navi Mumbai, India tejasghinmine.dev@gmail.com

Sanket Pawar Mechanical engineering Saras wati College of Engineering, Navi Mumbai, India sanket9480@gmail.com

Abstract—The general manufacturing problem can be described as the achievement of a predefined product quality with given equipment, cost and time constraints. Unfortunately, for some quality characteristics of a product such as surface roughness it is hard to ensure that these requirements will be met. This paper aims at presenting the various methodologies and practices that are being employed for the prediction of surface roughness. The resulting benefits allow for the manufacturing process to become more productive and competitive and at the same time to reduce any re-processing of the machined workpiece so as to satisfy the technical specifications. Each approach with its advantages and disadvantages is outlined and the present and future trends are discussed. The approaches are classified into those based on machining theory, experimental investigation, designed experiments and artificial intelligence

Keywords— ANN, Surface roughness, offline monitoring, online monitoring.

I. INTRODUCTION

There are two main practical problems that engineers face in a manufacturing process. The first is to determine

the values of the process' parameters that will yield the

desired product quality (meet technical specifications) and the second is to maximize manufacturing system performance using the available resources. The decisions made by manufacturing engineers are based not only on their experience and expertise but also on conventions regarding the phenomena that take place during processing.

In the machining field, many of these phenomena are highly complex and interact with a large number of factors, thus preventing high process performance from being attained. To overcome these problems, the researchers propose models that try to simulate Is mail Antulay
Mechanical engineering
Saraswati College of Engineering,
Navi Mumbai, India
Is mailantulay73@gmail.com

Swarnjayanti Gupta Mechanical engineering Saraswati College of Engineering, Navi Mumbai, India swarngupta978@gmail.com

the conditions during machining and establish cause and effect

relationships between various factors and desired product characteristics. Furthermore, the technological

advances in the field, for instance the ever-growing useCNC end milling which is commonly used in manufacturing industry for machining of Inconel 718. Mahesh, Muthu and Devadasan [2] focused on surface roughness as it denotes the product quality. There are several theoretical approaches are proposed to model roughness. Zain, Haron and Sharif [3] used AI technique like ANN to model roughness. Analytical and experimental models are developed using ANN and response surface methodology to calculate roughness. Zhong, Khoo and Han [4] discussed the application of ANN for modelling of surface roughness. In order to investigate how capable the ANN technique is at estimating the prediction value for surface roughness.

II.CLASSIFICATION OF APPROACHES

The classification of the selected papers was not easy

due to two main reasons. First, there are many papers

that do not strictly follow a certain methodology in its entirety, they rather select some of its basic principles

and combine them into a 'new' approach. Secondly, there are many cases where researchers blend different

strategies into a single approach and therefore no single

classification would be entirely accurate.

Taking into account the above, four major categories

were created to classify the selected papers. These are:

(i) approaches that are based on machining theory to develop analytical models and/or computer algorithms

to represent the machined surface; (ii) approaches that examine the effects of various factors through the

execution of experiments and the analysis of the results;

(iii) approaches that use designed experiments; and (iv)

artificial intelligence (AI) approaches.

3. Machining theory based approach

This category includes approaches that place emphasis

on certain aspects from the theory of machining such as

process kinematics, cutting tool properties, chip formation

mechanism etc. Computer-aided design (CAD) methods and tools are utilized so as to achieve the goal

of building a model that will be able to simulate the creation of the machined surface profile, thus visualizing

surface topography and assessing surface roughness.

In general, geometric model development forms the basis of the approach through rigorous mathematical equations. This model is then implemented by a computer

algorithm in order to handle the complex calculations. Also, there are some theoretical models that relate surface roughness to cutting conditions such as the

feed rate [2]. These models are generally not accurate so their improvement with the introduction of additional

parameters is examined by researchers.

IV. EXPERIMENTAL INVESTIGATION APPROACH

The experimental approach may be thought of as the most 'obvious' method: experiments with the factors that

are considered to be the most important are conducted

and the obtained results are used to investigate the effect

of each factor as well as the influencing mechanism on

the observed quality characteristic. Regression

analysis

is often employed in order to build models based on the

experimental data. The researcher's intuition and insight

play a great role in this approach but a high understanding

of the examined phenomenon is also necessary for the experiment to yield any meaningful results. The experimental approach is mainly adopted in cases where

there can be no analytical formulation of the cause and

effect relationships between the various factors.

V. ARTIFICIAL NEURAL NETWORKS OVERVIEW An ANN is an information processing system that displays

similar behavior to that of its biological analog. It is essentially a mathematical model that mimics the human reasoning and neurobiology and that is based

the following assumptions [35]:

_ Information processing occurs in a number of simple

elements called neurons.

_ Signals are transmitted between neurons over connection links.

_ Each connection link has an associated weight that multiplies the signal transmitted.

_ Each neuron applies an activation function to the incoming signal to determine its output signal (Fig. 2).

ANNs are mostly used for pattern recognition, pattern association and classification, constrained optimization

and systems modeling with applications ranging from

simple signal processing to medical diagnosis. The two main characteristics of an ANN are: (i) the pattern of arrangement of the neurons, namely the architecture

of the network, which generally dictates what type of problems can be dealt with; (ii) the method of determining the weights of the connections, either using

a training algorithm generalizing the relation of input to

output vectors-examples (supervised training) or inferring

classifications that are inherent to the data and generating

an exemplar vector for each class that is created (unsupervised training).

I. CONCLUSION

The current work presented a review of the different approaches that are used for predicting the surface roughness and certain remarks concerning each approach

can be found in the respective sections. As is evident from the referenced papers, in recent years there has been a great deal of research activity in the field and the

results that have been produced are good. The trend that

is formed encourages more automated systems building

for on-line monitoring, measuring or control and is mainly driven by the fact that the processes themselves

have been automated to a great extent. All the methodologies

that are presented here can exhibit advantages and disadvantages when compared to one another, but

given this trend the most promising seem to be the theoretical and the AI approaches. A comparison of these two approaches reveals that Almodels take into consideration the particularities of the equipment used and the real machining phenomena, information that is stored in the experimental data used to develop the models. On the other hand, the theoretical approach is based on conventions and idealizations, which are responsible for errors and limitations. Surprisingly enough, a combined effort that would involve both AI and analytical modeling so as to validate, refine or correct the theoretical models was not found in the literature. Other advantages of the AI approach are that the models created seem to be the most realistic and accurate, they probably exhibit the highest level of integration with computers

and that this approach can be used in conjunction with other more conventional techniques. With these facts taken into consideration, it can be concluded that there are not so many efforts as would have been expected. The same applies to the existing number of hybrid AI research approaches, such as the neurofuzzy systems. The advantages that they offer

(knowledge representation in the form of if-then rules, ANN assisted parameter determination) should be more than enough to encourage researchers to adopt these techniques, yet this has not been the case. Optimization of cutting conditions for a certain surface roughness is another field that has not received too much attention. GAs and other optimization algorithms could be ideally used in conjunction with the developed models for the prediction of surface roughness but as is evident from the above, very few similar approaches have been found.

REFERENCES

- B. Ozcelik, H. Oktem and H. Kurtaran, "Optimum surface roughness in end milling Inconel 718 by coupling neural network model and genetic algorithm", Int J Adv Manuf Technol, vol 27, pp.234–241 (2005).
- [2] G. Mahesh, S. Muthu and S. R. Devadasan, "Prediction of surface roughness of end milling operation using genetic algorithm", Int J Adv Manuf Technoly, (2014).
- [3] A. Zain, H. Haron and S. Sharif, "Prediction of surface roughness in the end milling machining using Artificial Neural Network", Expert Systems with Applications, vol 37, pp. 1755–1768 (2010).
- [4] Z. Zhong, L. Khoo and S. Han, "Prediction of surface roughness of turned surfaces using neural networks" Int J Adv Manuf Technol, vol 28, pp. 688–693, (2006).
- [5] M. Albu and G. Heydt, "on the use of RMS values in power quality assessment" IEEE transactions on power delivery, vol. 18, (2003).
- [6] S. Athreya1 and Y. Venkatesh, "Application Of Taguchi Method For Optimization Of Process Parameters In Improving The Surface Roughness Of Lathe Facing Operation", International Refereed Journal of Engineering and Science, vol 1, pp.13-19 ,(2012)